10:30-12:00 諸外国から見た日本の理科授業

Current Status and Research of Science Education in Taiwan

Science Education: Perspectives from a U.S. Researcher

Research interests

Science Modeling

Learning Technologies

Computer Supported Collaborative Learning(CSCL)

Scientific Epistemology 12-Year
Basic Education Curricula
in Taiwan

Directions Governing for the 12-Year Basic Education Curricula are scheduled to be implemented in August 2018.

Vision

Empowering Each Child: Nurturing individual Potential and Facilitating Lifelong Learning

Future Directions

Guided by the Directions and through joint efforts, curriculum reforms are an ongoing process, and are expected to achieve the following:

Curricular Refinement

Through discussion with stakeholders, schools may develop an appropriate curriculum plan, establish schoolbased courses, and continuously refine curricula.

Instruction Enrichment

Teachers should conduct co-lesson planning and openclassroom teaching, form professional communities, and employ multiple instruction and assessment strategiesnrich instruction.

Engagement in Learning

Learners are willing and able to learn autonomously. The Directions promote learners'engagement and encourage hands-on practice, project-based exploration, and showcase of learning outcomes.

	Science		Reading		Mathematics		Science, reading and mathematics	
	Mean score in PISA 2015	Average three-year trend	Mean score in PISA 2015	Average three year trend	Mean score in PISA 2015	Average three-year trend	Share of top performers in at least one subject (Level 5 or 6)	Share of low achievers in all three subjects (below Level 2)
	Mean	Score dif.	Mean	Score dif.	Mean	Score dif.	%	%
OECD average	493	-1	493	-1	490	-1	15.3	13.0
Singapore	556	7	535	5	564	1	39.1	4.8
Japan	538	3	516	-2	532	1	25.8	5.6
Estonia	534	2	519	9	520	2	20.4	4.7
Chinese Taipei	532	0	497	1	542	0	29.9	8.3
Finland	531	-11	526	-5	511	-10	21.4	6.3

	Mean science score	Beliefs about the nature and origin of scientific knowledge		Share of students with science-related career expectations			Motivation for learning science			
		Index of epistemic beliefs (support for scientific methods of enquiry)	Score-point difference per unit on the index of epistemic beliefs	All student s	Boys	Girls	Increased likelihood of boys expecting a career in science	Index of enjoyme nt of learning science	Score-point difference per unit on the index of enjoyment of learning science	Gender gap in enjoyment of learning science (Boys - Girls)
	Mean	Mean index	Score dif.	%	%	%	Relative risk	Mean index	Score dif.	Dif.
OECD average	493	0.00	33	24.5	25.0	23.9	1.1	0.02	25	0.13
Singapore	556	0.22	34	28.0	31.8	23.9	1.3	0.59	35	0.17
Japan	538	-0.06	34	18.0	18.5	17.5	1.1	-0.33	27	0.52
Estonia	534	0.01	36	24.7	28.9	20.3	1.4	0.16	24	0.05
Chinese Taipei	532	0.31	38	20.9	25.6	16.0	1.6	-0.06	28	0.39
Finland	531	-0.07	38	17.0	15.4	18.7	0.8	-0.07	30	0.04

Science Education: Perspectives from a U.S. Researcher

Jeanna R. Wieselmann

My Research in Japan

- National Science Foundation (NSF) Fellowship
- Research in Japan for 3 months through partnership with Japan Society for the Promotion of Science (JSPS)
 - Shizuoka University
 - Professor Yoshisuke Kumano

U.S. Education Background

- Public education controlled by individual states
 - Standards
 - Curriculum
 - Courses
 - Teaching methods
 Textbooks
- Some states give power to local school districts
 - Over 25,000 school districts in the U.S.

Current Challenges

- Low science scores
 - 50% proficiency in science
- Disparities between groups of students
 - Gender
 - Race/ethnicity
 - Socioeconomic status
 - Language

Science Reform

- 1950s-1970s: Space Race
- National security and international competition
- 1983: A Nation at Risk
- 1989: Science for all Americans
- 1993: Benchmarks for Scientific Literacy
- 1996: National Science Education Standards

NGSS Background

- 2011: A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas
 - National Research Council
 - Built on 1996 National Science Education Standards
- Includes ideas and practices of engineering
- 2013: Next Generation Science Standards (NGSS)
- December, 2016: 18 states and the District of Columbia had adopted the NGSS

Crosscutting Concepts

- Patterns
- Cause and effect
- Scale, proportion, and quantity
- Systems and system models
- · Energy and matter
- Structure and function
- Stability and change

Disciplinary Core Ideas

- Key ideas in science with broad importance
- Key tool for understanding more complex ideas
- Increasing depth across grade levels
- Example: Matter and Its Interactions

How NGSS is Different

- Standards expressed as performance expectations
 - Combine practices, core ideas, and crosscutting concepts
 - Identify what should be assessed
 - Describe end goals of instruction

Performance Expectations MS-P81-2. Matter and its Interactions Students with demonstrate undestanding can MS-P81-2. Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reservoir has occurred. [Claufficialor Statement: Examples of reactions could include burning sugar or steel wood, last reactive with reactive management of the control of the cont

NGSS Adoption

- December, 2016: 18 states and the District of Columbia had adopted the NGSS
- Barriers
 - Teacher Training
 - Need for curricular resources
 - Time to revise standardized tests
 - No financial incentives to adopt

Science, Technology, Engineering, and Mathematics (STEM)

 Science, technology, engineering, and mathematics as separate subjects

Science, Technology, Engineering, and Mathematics (STEM)

• STEM subjects are integrated

14:30-16:30 諸外国の理科教育研究/ 共同研究の可能性

Experiences of designing and implementing model-based instruction in Taiwan

Gender and STEM: Research Overview

Models and Modeling in Science Education

 Promoting students' understanding of models and modeling is one of the major goals of science teaching (National Research Council, 1996, 2007, 2012).

Modeling in NGSS

- The Next Generation Science Standards (NGSS) suggests during middle school
 - Develop a model to describe unobservable mechanisms
 - Develop a model to describe unobservable mechal
 Develop and use a model to describe phenomena.
 - Models can be used to represent systems and their interactions

Theoretical perspective

- Understanding of models and modeling is part of the nature of science.
- Understanding of models and modeling is a major subscale within modeling competence (Nicolaou and Constantinou, 2014)
 - Modeling practices
 - Meta-knowledge

Sequence of teaching and modeling procedure

- Based on inquiry: questioning, hypothesizing, investigating, analyzing, modeling, and evaluating (Schwarz & White, 2005)
- EIMA: engaging, investigating, modeling, and applying (Schwarz & Gwekwerere, 2007)
- Based on scientific reasoning: analysis, reasoning, explanation, and evaluation (Sins, Savelsbergh and van Joolingen, 2005)

Study 1: The impact of modelsbased teaching on the different science competence

Goals of the curriculum design

- Modeling practice
- System thinking
- Understanding of models and modeling
- Understanding of science concepts

Model-based Teaching in Earth Science

- Two classes of ninth grade students
- 10-hours of model-based curriculum based on the MIS model
- Students were engaged in experiments, reading, and discussion
- Students construct drawings of a model the "El Nino"

Study 2: The effects of modelbased curriculum design on the students' understanding of models and modeling

Research Inquiry

- Teachers have difficulty to understand and design model-based curriculum.
- Researchers have not linked the <u>design aspects of the curriculum and instruction</u> to the <u>effects students' understanding of models and modeling</u>.

Importance of students' understanding of models and modeling $% \left(1\right) =\left(1\right) \left(1\right)$

- Engaging students in model-based activities can improve their understanding of models and modeling (Schwarz et al., 2009).
- Students' advanced understanding of models and modeling support their use and creation of models for learning science (Gobert et al., 2011; Sins, Savelsbergh, van Joolingen, & van Hout-Wolters, 2009).

Teachers

- Two middle school teachers participated
 - Teacher A: earth science and biology teacher (5 years of teaching experience)
 - Teacher B: biology teacher (8 years of teaching experience)
- The two teachers involved in curriculum design, teaching, and reflecting upon teaching

Curriculum design

- The modeling activities were based on the Model-Centered Instructional Sequence (Baek et al., 2011).
- The students were engaged in a series of activities consisting of investigation, reading, discussion, model building and model revision.
- The content area
 - Earth science curriculum: model of El Nino
 - The first and second Fishery: marine ecology and fishery sustainability.

Goals of the curriculum design

- Modeling practice
- Understanding of models and modeling
- Understanding of science concepts

Instrument

- Students' Understanding of Models in Science (SUMS) Survey (Treagust, Chittleborough, & Mamiala (2002).
 - 27 items
 - five constructs
 - five-point Likert scale

Constructs in SUMS

- models as explanatory tools (ET)
- models as exact replicas (ER)
- multiple representations (MR)
- the changing nature of scientific models (CNM)
- how scientific models are used (USM)

Sample questions

- Models are used to show an idea. (ET)
- A model needs to be close to the real thing. (ER) (reversed)
- Many models show different parts of an object or show the objects differently. (MR)
- A model can change if new theories or evidence prove otherwise. (CNM)
- Models are used to make and test predictions about a scientific event. (USM)

Data analyses

- Confirmatory factor analysis (CFA) was performed to confirm the reliability and validity of the questionnaire.
- T-tests were performed to understand the differences between the posttest and pretests results.
- ANCOVA tests were performed to investigate the extent to which the results in the three curricula differ.

Evolution of the curriculum design

	Duration of the curriculum	Nature of Model	Constructed Model	Modeling Cycle
Earth Science	12 hrs	implicit	drawings	one model (three times)
1st Fishery	9 hrs	explicit	concept map	one model (three times)
2nd Fishery	14 hrs	explicit	concept map; food web	two models (three times each)

Changes in teaching practices

- During the earth science curriculum
 - Teacher A thought it was not necessary to use the reading material for the Nature of Models and Modeling even though the material was available at that time
 - Teacher A explained briefly and verbally "what is a model" and the process of modeling
 - Teacher A was not fully comfortable with using the wording of models and modelling and discussions about models were limited

Changes in teaching practices

- During the1st Fishery curriculum
- Enhanced the teacher professional development
- Both Teacher A and Teacher B used the reading material for the Nature of Model and Modeling
- Instruction regarding the nature of model and modeling followed by a whole class dicussion
- But both teachers rarely mentioned models or modeling during the rest of the curriculum

Changes in teaching practices

- During the 2nd Fishery curriculum
 - Teacher B used the reading material for the Nature of Model and Modeling
 - Whole class discussion regarding the nature of model and modeling
 - Teacher B emphasized the epistemic goals of building models when the students were revising the models

Conclusions

- ET and USM improved in all three curricula.
- The students showed no improvements in the understanding of ER construct.
- As the instruction and curriculum design improved, students' understanding of models and modeling seemed to progress further.

Theoretical Framework

- Social Cognitive Career Theory (Lent et al., 1994)
 - Career interests influenced by individuals' self-efficacy and perceived likelihood of positive outcomes
 - Gender differences in self-efficacy as early as first grade (Eccles, Wigfield, Harold, & Blumenfeld, 1993)
- Mindset (Dweck, 2000)
 - Growth mindset: belief that effort can make people smarter
 - Fixed mindset: belief that intelligence is innate

Research Questions

- How do elementary girls perceive STEM following their experience at STARBASE Minnesota?
- How do elementary girls perceive themselves and other females in STEM?
- \bullet What do elementary girls view as indicators of success in STEM?

Participants

- 30 participants (girls in grades 4-5)
- Eight schools from six school districts
- Stratified sampling

Research Design

- Single embedded case study (Yin, 2014)
 - Contextualized in STARBASE experience
 - Multiple units of analysis
- Pre- and post-STARBASE interviews
- Interviews conducted with pairs of students
- Semi-structured interview protocol
- Data collected in February-June 2016

Data Analysis • Multiple coding cycles • Constant comparative analysis 1. Inductive (open) coding 2. Pattern codes consolidated to themes (Miles, Huberman, & Saldaña, 2014)

Discussion and Implications

- Consider rigor and pedagogy in STEM teaching
- Growth mindset value effort
- Focus on critical thinking
- Need for future research on informal STEM and gender equitable practices